linear adj. 1.線的,直線的。 2.長度的。 3.【數(shù)學(xué)】一次的,線性的。 4.【動、植】線狀的;細長的。 5.由線條組成的,以線條為主的,強調(diào)線條的。 linear amplification 直線放大。 a linear equation 一次方程式。 a linear leaf 線形葉。 linear arts 線條藝術(shù)。
The remnant n(t)is the difference between the actual pilot output and the linear approximation to it . 剩余值n(t)是駕駛員的真實輸出和它的線性近似之差。
Applications of the linear approximation 線性逼近法的應(yīng)用。
Analyses of valid range for the linear approximation in a single - mode laser 單模激光系統(tǒng)線性化近似適用范圍的分析
When nonlinear degree is high , the linear approximation error must be considered 因此在非線性程度較高時,必須考慮減少線性近似誤差。
The analysis of valid range of the linear approximation in a loss model with a single - mode laser 三階近似激光模型線性化近似適用范圍的分析
The remnant n ( t ) is the difference between the actual pilot output and the linear approximation to it 剩余值n ( t )是駕駛員的真實輸出和它的線性近似之差。
Linear approximation of lambert - beer ' s law and its application to ultra - micro analysis by atomic absorption spectrometry 比耳定律的近似線性關(guān)系應(yīng)用于原子吸收光譜法的超微量分析
A linear approximation of the non - linear gmsk is proposed to help gmsk to be readily accommodated into a sdr 對非線性的gmsk分析了線性近似方法,這對于在軟件無線電中實現(xiàn)gmsk有重要意義。
The expressions for correlation functions , power spectrum and correlation time of the intensity of a single - mode laser driven by two white noises with a exponential function correlation form were calculated by linear approximation method 應(yīng)用線性近似方法,計算了具有指數(shù)形式關(guān)聯(lián)的兩白噪聲驅(qū)動下單模激光光強的關(guān)聯(lián)函數(shù)、功率譜及關(guān)聯(lián)時間。
The objective function of the qp problem is a quadratic function which is an approximation of the lagrangian function of the constrained problem and the constraints of the qp problem are linear approximation of the constraints of the constrained problem 這些二次規(guī)劃子問題的目標(biāo)函數(shù)是原約束最優(yōu)化問題的lagrange函數(shù)的二次某種近似,其約束條件是原約束最優(yōu)化問題的線性逼近。
In mathematics, a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function). They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.